

www.OakwoodSys.com 1

SQL Server Quick Guide:
Data Compression

An Introduction

http://www.OakwoodSys.com

www.OakwoodSys.com 2

Compression, Can You Dig It?
Compression has hoops, JUMP!

By now you should know whether or not you can benefit from
compression. If you do, it’s time to decide what kind of compression is
going to work best and lastly what kind of downtime you’re facing or any
performance impacts you’ll see.

But first, there are some additional hoops we need to jump through first
before you start into your databases guns blazing. The hoops you need to
get through are:

Enterprise Edition

Table compression is an enterprise only feature, boys and girls. If you’re
on standard, you can’t use it. In fact, if you’re on SQL Server Standard and
below, you can’t even use the compression estimation stored procedures
to see if it warrants the upgrade to Enterprise or not (I know, great
marketing Microsoft – buy it, then figure out if you need it!). You’ll be
greeted with this lovely error if you attempt to use the
sp_estimate_data_compression_savings stored procedure:

In order to find out the edition of your SQL Server environment, you can
use:
select @@version;

Msg 7738, Level 16, State 2, Line 1
Cannot enable compression for object '#sam-
ple_tableDBA05385A6FF40F888204D05C7D56D2B_____________________________________
__________________________________000000000015'. Only SQL Server Enterprise
Edition supports compression.

http://www.OakwoodSys.com

www.OakwoodSys.com 3

Do you have the spare cycles on your CPU to handle the extra workload
introduced by compression?

In order to determine if you have the spare room in the CPU department
to handle the extra workload introduced by compression, head back to
Performance Monitor to get some information. One counter is all you’ll
need for this: Processor: % Processor Time. You’ll want to get a relatively
large sample size (over a few days) in order to ensure that you are seeing
CPU utilization from all of your processing/database access
patterns. Eyeball this to make sure average utilization is not exceeding
90% for all processors. Ideally you’ll be around the 60-80% level, which
will leave all compression options available to you.

Types of Compression—CPU Impact

Since we’re on the topic, we might as well go over the types of
compression and the impact they have on CPU:
 Row compression

 Stores fixed data type columns in variable-length format
 Page compression

 The following operations are performed (and it’s even done in this
 order!):
 - Row compression - you can’t have one without the other!
 - Prefix compression –stores repeated prefix values for a
 column in a row in a special compression information (CI)
 structure that is immediately after the page header. The
 repeated prefix values in the column are replaced with a
 reference to the corresponding prefix in the CI structure
 (even partial matches can be indicated)
 - Dictionary compression – searches the page for repeating
 values and stores them in another CI area. Dictionary
 compression is not column specific and operates on the
 page.
 Unicode compression

 - This is implemented automatically with row and page compression
 can’t have this without the others (one of the two).
 - The implementations benefits depend on the locale and involve
 compressing Unicode values that don’t require localization with
 one byte instead of two bytes.

CPU Impact

http://www.OakwoodSys.com

www.OakwoodSys.com 4

That’s a whole lot of information regarding table compression, but what
does it all mean? For all forms of compression, the data pages are
compressed both on disk and in memory. Whenever SQL Server needs
access that page, it must rely on the CPU to decompress the page before
it can be read and then additional overhead to perform the compression
of any modified pages.
The amount of strain placed on the CPU to compress and decompress the
data is directly related to how much work is done by the CPU to perform
the compression. Thus, page compression is the most CPU intensive, and
also most effective, form of data compression. It will generally require
anywhere from 20-30% of additional CPU capacity (I emphasize
generally). Row compression is generally a 10% hit to your CPU (again,
emphasis on generally).

With Great Power Comes Great Responsibility

Easy there, champ! Let’s not go getting all crazy with applying
compression now that you feel you are a good candidate for
it. Compression is extremely flexible and so we should take advantage of
that by being selective when choosing what to compress. By flexible I
mean that you can compress:
 whole heaps,
 whole clustered indexes,
 whole indexed views,
 whole nonclustered indexes, and

 individual or ranges of partitions for partitioned tables and
nonclustered indexes (partition aligned indexes, let’s not be silly).

When I investigated this issue initially, I came across a SQL Server 2008
article on SQL Server Compression authored by Sanjay Mishra (a principal
program manager of the SQLCat team over at Microsoft). Sanjay’s article –
which is definitely worth a full read if you’re interested in compression –
has fantastic guidance in identifying where and what type of compression
is most appropriate in specific cases. The article even contains a sample
table that contains, what I would refer to as, a balanced scorecard to use
for evaluating compression options. I merely took the queries he was kind
enough to provide in the article and did some work around them to get
them to build the balanced scorecard manually for me instead of having to
do it in excel (I’m lazy, what can I say).

http://www.OakwoodSys.com
http://technet.microsoft.com/en-us/library/dd894051(v=SQL.100).aspx
http://technet.microsoft.com/en-us/library/dd894051(v=SQL.100).aspx

www.OakwoodSys.com 5

Of note:
 I did not perform this work with partitioning in mind,
 Stats are only as representative as the duration of time SQL Server was

last started or the database was opened,
 This is at the database level, so it will iterate through all objects within

the currently active database

Not to Get All Management-y, But It’s Balanced Scorecard Time

Below is the query that will build the balanced scorecard that comes from
aforementioned SQLCat article:

if object_id(N'tempdb..#index_stats') is not null

 drop table #index_stats;

select

 SN.name as Schema_Name,

 T.name as Table_Name,

 OS.partition_number AS Partition,

 OS.index_id AS Index_ID,

 I.type_desc AS Index_Type,

 (OS.leaf_update_count * 100.0 / (OS.range_scan_count +
OS.leaf_insert_count + OS.leaf_delete_count + OS.leaf_update_count +
OS.leaf_page_merge_count + OS.singleton_lookup_count)) AS Percent_Update,

 (OS.range_scan_count * 100.0 / (OS.range_scan_count + OS.leaf_insert_count
+ OS.leaf_delete_count + OS.leaf_update_count + OS.leaf_page_merge_count +
OS.singleton_lookup_count)) AS Percent_Scan

into

 #index_stats

from

 sys.dm_db_index_operational_stats(db_id(), null, null, null) as OS

 inner join sys.tables as T on OS.object_id = T.object_id

 inner join sys.indexes as I on I.object_id = OS.object_id and
OS.index_id = I.index_id

 outer apply(select name from sys.schemas where schema_id =
T.schema_id) as SN

where

 (OS.range_scan_count + OS.leaf_insert_count + OS.leaf_delete_count +
OS.leaf_update_count + OS.leaf_page_merge_count + OS.singleton_lookup_count) <> 0
and

 objectproperty(I.object_id, 'IsUserTable') = 1;

if object_id('tempdb..#row_compression_results') is not null

 drop table #row_compression_results;

create table #row_compression_results;

http://www.OakwoodSys.com

www.OakwoodSys.com 6

create table #row_compression_results
(

 object_name sysname,

 schema_name sysname,

 index_id int,

 partition_number int,

 size_with_current_compression_setting_KB bigint,

 size_with_requested_compression_setting_KB bigint,

 sample_size_with_current_compression_setting_KB bigint,

 sample_size_with_requested_compression_setting_KB bigint

);

if object_id('tempdb..#page_compression_results') is not null

 drop table #page_compression_results;

create table #page_compression_results

(

 object_name sysname,

 schema_name sysname,

 index_id int,

 partition_number int,

 size_with_current_compression_setting_KB bigint,

 size_with_requested_compression_setting_KB bigint,

 sample_size_with_current_compression_setting_KB bigint,

 sample_size_with_requested_compression_setting_KB bigint

);

declare @currSchema as sysname;

declare @currTable as sysname;

declare dbCursor cursor fast_forward for

 select distinct

 SCHEMA_NAME,

 table_name

 from

 #index_stats

 order by

 Schema_Name,

 Table_Name;

open dbCursor;

fetch next from dbCursor into @currSchema, @currTable;

while @@FETCH_STATUS = 0

 begin

 insert into #row_compression_results

 exec sp_estimate_data_compression_savings

 @schema_name = @currSchema,

 @object_name = @currTable,

 @index_id = null,

 @partition_number = null,

 @data_compression = 'ROW';

http://www.OakwoodSys.com

www.OakwoodSys.com 7

insert into #page_compression_results

 exec sp_estimate_data_compression_savings

 @schema_name = @currSchema,

 @object_name = @currTable,

 @index_id = null,

 @partition_number = null,

 @data_compression = 'PAGE';

 fetch next from dbCursor into @currSchema, @currTable;

 end;

close dbCursor;

deallocate dbCursor;

select

 IXS.Schema_Name,

 IXS.Table_Name,

 IXS.Partition,

 IXS.Index_ID,

 IXS.Index_Type,

 IXS.Percent_Update,

 IXS.Percent_Scan,

 PCR.size_with_current_compression_setting_KB / 1024 as
Current_Compression_Size_MB,

 RCR.size_with_requested_compression_setting_KB / 1024 as
Row_Compression_Size_MB,

 PCR.size_with_requested_compression_setting_KB / 1024 as
Page_Compression_Size_MB,

 100. - cast((cast(PCR.size_with_requested_compression_setting_KB as
numeric(18, 6)) / cast(PCR.size_with_current_compression_setting_KB as
numeric(18, 6))) * 100 as numeric(5, 2)) as
Page_Compression_Savings_Percentage,

 100. - cast((cast(RCR.size_with_requested_compression_setting_KB as
numeric(18, 6)) / cast(RCR.size_with_current_compression_setting_KB as
numeric(18, 6))) * 100 as numeric(5, 2)) as
Row_Compression_Savings_Percentage

from

 #index_stats as IXS

 left join #row_compression_results as RCR on IXS.schema_name =
RCR.schema_name and IXS.table_name = RCR.object_name and IXS.index_ID =
RCR.index_id

 left join #page_compression_results as PCR on IXS.schema_name =
PCR.schema_name and IXS.table_name = PCR.object_name and IXS.index_ID =
PCR.index_id

where

 RCR.size_with_requested_compression_setting_KB <> 0 and

 PCR.size_with_requested_compression_setting_KB <> 0

order by

 PCR.size_with_current_compression_setting_KB desc;

http://www.OakwoodSys.com

www.OakwoodSys.com 8

These Aren’t the Droids You’re Looking For
Now that you have your balanced scorecard, what are you looking
for? This is how I look for good candidates:

Page compression – most CPU impactful so we’re a little more careful
 Low update percentage to total table activity (< 30%) – compressing a

very active table is going to cause overhead on update/insert/delete
activity, which is in turn going to cause other issues

 High percentage of scans to total table activity (>65%) – scans are go-
ing to give you the most bang for your buck fitting more data on each
page, decreasing the amount of pages needing to be retrieved from
storage and stored in memory

 Database size is large (there’s a reason I sort the results descending by
size) – 25 KB tables that compress to 2KB, really don’t matter because
they’ll fit in memory compressed and uncompressed

 Large difference between Row_Compression_Savings_Percentage and
Page_Compression_Savings_Percentage – if you only get 25% addition-
al savings from page compression, is it really worth the extra CPU over-
head? Again, this depends on the size of the table because if the table
is 100GB, 25% is going to be 25GB and that’s a whole lot fewer pages

Row compression – least CPU impactful so we can be a little more liberal
 Reasonable update percentage to total table activity (<65%) – we can

compress tables that are a bit more active with Row vs. Compression as
there will be less overhead on the insert/update/delete operations

 Low to moderate percentage of scans compared to total table activity
(<40%) – as you will likely only be touching a subset of pages with
high seek activity, you still benefit, just not as much

 Database size is reasonably large – same reason as page compression

 Small difference between Row_Compression_Savings_Percentage and
Page_Compression_Savings_Percentage – if the gain from page com-
pression over row compression is small, why bother with the added
overhead of page compression?

The tables that don’t fit for either page or row compression? Those are
indeed not the droids you are looking for.

http://www.OakwoodSys.com

www.OakwoodSys.com 9

Ready...Set...Compress!
There are ideal ways to go about compressing your data:
 One compress operation at a time or many at the same time – I like

one at a time as it lets you keep track of the system impact you are
having much better. Additionally it keeps your memory, CPU and disk
requirements at a more predictable level

 Compress small to large – as you complete the compression
operations, you are releasing more space to data files so that they can
hopefully absorb the space requirements for the compression on the
larger objects without having to grow

 Set online ON or OFF for the rebuild operation

 - OFF is faster and requires less resources to complete. Offline re
 builds apply a table lock for the duration of the index operation.
 - ON is slower and requires more resources to complete. Online
 rebuilds apply an Intent Share (IS) lock on the source table for the
 duration of index operation – except at the beginning (a shared lock
 - S Lock) and the end (schema mod lock – SCH-M).
 - Off requires a maintenance window due to the fact that you are
 taking the index offline while you are rebuilding it
 Sort in tempdb – especially with online rebuilds, I like this option as it

allows you to offload a lot of the IO activity – the results of the sort
runs specifically. This option specifically allows you to store the
intermediate results of the rebuild operation in the tempdb vs. the
same database as the index, specifically the destination filegroup

That’s All, Folks!

I’m really not going to cover the actual TSQL behind enabling
compression. It’s all covered in the BoL quite extensively and pretty darn
well. Indexes and tables have data compression enabled through:
Alter Index… Rebuild statements - http://technet.microsoft.com/en-us/
library/ms188388.aspx

Alter Table… Rebuild statements - http://technet.microsoft.com/en-us/
library/ms190273.aspx

I hope this was a beneficial starting point for identifying whether or not
data compression may help with your specific environment!

http://www.OakwoodSys.com
http://technet.microsoft.com/en-us/library/ms188388.aspx
http://technet.microsoft.com/en-us/library/ms188388.aspx
http://technet.microsoft.com/en-us/library/ms190273.aspx
http://technet.microsoft.com/en-us/library/ms190273.aspx

www.OakwoodSys.com 10

Jerrod Early is a SQL Consultant with Oakwood’s Managed Services
group. When not furthering his knowledge in all things data and
technology, he enjoys spending time with his family and being mercilessly
trolled in video games.

About the Author:

http://www.OakwoodSys.com

